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Abstract

Accurate quantitation of the spectral components in a pre-selected frequency band for magnetic resonance spectroscopy (MRS)

signals is a frequently addressed problem in the MR community. One obvious application for such a frequency-selective technique is

to lower the computational burden in situations when the measured data sequence contains too many samples to be processed using

a standard full-spectrum method. Among the frequency-selective methods previously proposed in the literature, only a few possess

the two features of primary concern: high robustness against interferences from out-of-band components and low computational

complexity. In this survey paper we consider five spectral analysis methods which can be used for MRS signal parameter estimation

in a selected frequency band. We re-derive the filter diagonalization method (FDM) in a new way that allows an easy comparison to

the other methods presented. Then we introduce a frequency-selective version of the method of direction estimation (MODE) which

has not been applied to MR-spectroscopy before. In addition, we present a filtering and decimation technique using a maximum

phase bandpass FIR-filter and relate it to a similar ARMA-modeling approach known as SB-HOYWSVD (sub-band high-order

Yule–Walker singular value decomposition). Finally, we study the numerical performances of these four methods and compare them

to that of the recently introduced SELF-SVD (Singular Value Decomposition-based method usable in a SELected Frequency band)

in several examples using simulated MR data, and discuss the benefits and disadvantages of each technique.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Frequency-selective spectroscopy; Damped sinusoidal model; Filter diagonalization method; Method of direction estimation; Filtering

and decimation; Singular value decomposition; Yule–Walker
1. Introduction and problem formulation

Consider the following model commonly used for

MR data:

yðtÞ ¼
X�n

k¼1

qkk
t
k þ eðtÞ; kk ¼ e�akþixk t ¼ 0; . . . ;N � 1;

ð1Þ
where �n denotes the total number of components, kk are
the modes of the signal, {qk, ak, xk} are the complex
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amplitude, damping, and angular frequency of the kth
component (note that the sampling period has been
absorbed in ak and xk, for notational convenience), eðtÞ
is a noise term and N denotes the number of available

samples. The parameters �n and {qk, ak, xk, k ¼ 1; . . . ; �n}
are unknown. Note that the model in Eq. (1) assumes a

Lorentzian lineshape for each of the signal components

in yðtÞ. We do not address the case of non-Lorentzian

lineshapes in this survey.

In several applications, where the measured data se-
quence contains many data samples (e.g., between

10,000 and 100,000) and, moreover, when the number of

components could be thousands, it would be too com-

putationally intensive to estimate the parameters of all

resonances present in Eq. (1) using a standard time-

domain method based on, e.g., the singular value de-

composition (SVD). For this and other reasons we
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might be interested in only a few components of Eq. (1)
that lie in a pre-specified frequency band:

½xl;xu�; ð2Þ
where xl and xu denote the lower and upper limits of

the frequency band of interest. We assume that the

number of components of Eq. (1), lying in the frequency

band of Eq. (2), which we denote by

n6 �n ð3Þ

is given. If n was a priori unknown, it could be estimated

from the data by counting the peaks of the FFT (fast

Fourier transform) of Eq. (1) that lie in the frequency

band of Eq. (2), or as the effective rank of a certain data
matrix (see, e.g., [7]).

The problem is to estimate the parameters of the n
components of Eq. (1) that lie in the frequency band of

Eq. (2). Several methods have been developed for fre-

quency-selective parameter estimation (see, e.g., [1,7–14]

and the references therein). The so-called filter diago-

nalization method (FDM) [1,19–21] is frequently con-

sidered in the literature on applications of MR
spectroscopy in, e.g., chemistry and biomedicine. As

shown in the next section, the theory of FDM can in our

opinion be simplified by introducing it from a new signal

processing perspective. This makes it easier to compare

FDM analytically to the other methods presented in this

paper.

Since the performance of FDM has already been

compared and found to be superior (see [21]) to that of
the LP-ZOOM (see, e.g., [13]), we do not consider the

LP-ZOOM in this survey. Instead, we present a new

spectroscopic interpretation of the beamspace version of

MODE (see, e.g., [4–6]) originally designed for array

signal processing applications, which we will refer to as

SELF-MODE (a MODE-based technique that is usable

in a SELected Frequency band). In addition, we make

use of data filtering and decimation to introduce a new
approach based on the maximum-phase bandpass FIR-

filter method of [9] which is very similar, conceptually,

to the ARMA-modeling based filtering and decimation

technique called SB-HOYWSVD (see [8]). We call this

new approach the FIDO (FIltering and DOwnsampling)

method. Finally, we compare these four methods to the

recently developed SELF-SVD technique (see [7]) which

can be viewed as a frequency-selective implementation
of ESPRIT (see, e.g., [15]). Somewhat similarly (see

Section 2 and [20]), FDM can be viewed as a frequency-

selective implementation of the related state-space and

matrix pencil methods of spectral analysis (see, e.g.,

[2,22]).

In Section 2 we present brief derivations of FDM,

SELF-MODE, and FIDO. In addition, the presentation

of each of the three methods outlined there is concluded
with a step-by-step description, to help the reader write

her own implementations. The descriptions of SB-HO-
YWSVD and SELF-SVD are very brief and located in
the Appendix A, as we add very little to what is already

known about these two methods. In Section 3 we pres-

ent several numerical examples to illustrate the gain in

using a frequency-selective approach in contrast to a

standard full-spectrum method (see, e.g., [17,22]) and to

give a fair comparative analysis of some new and some

well-established sub-band MR techniques. Finally, in

the concluding Section 4, we discuss the similarities and
differences between, and the advantages and disadvan-

tages of all five methods (FDM, SELF-MODE, FIDO,

SB-HOYWSVD, and SELF-SVD).
2. Overview of three methods

2.1. The FDM revisited

By using a mathematical framework that has roots in

the signal processing literature we are able to present the

FDM in a practically equivalent but, in our opinion,

simpler way compared to how it has been described

earlier in e.g. [1] and [20]. Previous derivations of FDM

involve no requirement for prior information on n. In
this derivation, however, we assume n to be known. This
is a relatively minor difference since e.g. [1] computes the

parameter estimates of all modes that have an error (see

below) lower than some pre-specified threshold, whereas

here we estimate the parameters of the n modes with the

smallest error (no threshold required). However, this

difference indicates that the practical application we are

interested in this paper is different than that of e.g. [20]

(see more comments in Section 4). We start this deri-
vation by considering the entire spectral range, and later

introduce the simple modification required for the sub-

band analysis.

Consider the data sequence given in Eq. (1), but

disregard the noise term ðeðtÞÞ for the moment, and re-

write this data sequence as

yðg þ hþ jÞ ¼
X�n

k¼1

qkk
gþhþj
k

¼ kg1 � � � k
g
�n

h i q1k
j
1 0

. .
.

0 q�nk
j
�n

2
64

3
75

kh1
..
.

kh�n

2
64

3
75: ð4Þ

Define the m� m Hankel data matrix Yj as

Yj ¼ ½yðg þ hþ jÞ�g;h¼0;...;m�1 ¼ ADjA
T ; ð5Þ

where

A ¼ aðk1Þ � � � aðk�nÞ½ � ¼

1 � � � 1

k1 � � � k�n
..
. ..

.

km�1
1 � � � km�1

�n

2
6664

3
7775; ð6Þ
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Dj ¼
q1k

j
1 0

. .
.

0 q�nk
j
�n

64 75 ð7Þ

and where m is an integer user parameter (which we call

the ‘‘snapshot length’’). Note that one could consider

several other alternative definitions of the Hankel data

matrix Yj. In the following we will choose m as close to

N=2 as possible; and hence, for simplicity, we will con-
sider the Hankel data matrix as it is defined in Eq. (5),

instead of a perhaps more general non-square matrix.

Construct the matrix pencil (see, e.g., [2,3]) Y1 � kY0.

If mP �n (which we assume in the following), the solu-

tions to the singular generalized eigenvalue problem:

ðY1 � kY0Þv ¼ AðD1 � kD0ÞAT v ¼ 0 ð8Þ
subject to v 2 RðY0Þ ¼ RðAÞ, where RðY0Þ denotes the
column space of Y0, are given by

k ¼ kp ðgeneralized eigenvalue of the matrix pencil

Y1 � kY0Þ ð9Þ

v ¼ vp ðright generalized eigenvector associated with

the eigenvalue kpÞ ð10Þ

for p ¼ 1; . . . ; �n. Hence each element in fkpg�np¼1 is a rank

reducing number for the matrix pencil Y1 � kY0 and can

be determined as such. We note that fkpg�np¼1 are also the
eigenvalues of Yj � kYj�1, a fact which we will use later

(it is also used in [1]) to check the validity of each esti-

mated mode.

By writing Eq. (8) as:

~A~D~AT
� �

vp ¼ 0; ð11Þ

where

~A ¼

1 � � � 1 1 � � � 1

k1 � � � kp�1 kpþ1 � � � k�n
..
. ..

. ..
. ..

.

km�1
1 � � � km�1

p�1 km�1
pþ1 � � � km�1

�n

2
6664

3
7775 ð12Þ

and

~D ¼ diag q1ðk1 � kpÞ; . . . ; qp�1ðkp�1 � kpÞ;
�

qpþ1ðkpþ1 � kpÞ; . . . ; q�nðk�n � kpÞÞ ð13Þ

we easily see that

aT ðkkÞvp ¼ 0 for k 6¼ p: ð14Þ

Hence, since

ŷ ¼ Aw; ð15Þ
where

ŷ ¼
yð0Þ
..
.

yðm� 1Þ

2
64

3
75 w ¼

q1

..

.

q�n

2
64

3
75
we get

vTp ŷ ¼ vTp aðkpÞqp; p ¼ 1; . . . ; �n: ð16Þ

From Eq. (16) we can estimate the amplitudes fqkg
�n
k¼1 in

Eq. (4) directly by using the previously obtained esti-

mates of fkkg�nk¼1. Note that we only use the first

‘‘snapshot’’ (½yð0Þ � � � yðm� 1Þ�T ) in Eq. (16). One could
also compute the amplitude estimates as the average

over all available snapshots (i.e., ½yðtÞ � � � yðt þ m� 1Þ�T ,
t ¼ 0; . . . ;N � m). For each t > 0 we would then have to

compensate for the time delay t, as we would compute

estimates of fqpk
t
pg rather than fqpg. However, as we

have found empirically, considering all available snap-

shots in Eq. (16) does not improve the accuracy, but

only increases the computational burden (note that for
MR signals, the first snapshots have the highest signal-

to-noise ratios (SNR) due to the damping of the signal

in the future snapshots).

We also outline an alternative approach for the am-

plitude estimation step. Normalize the generalized ei-

genvectors fvpg�np¼1 so that

vTpY0vk ¼
1 p ¼ k
0 p 6¼ k:

�
ð17Þ

For p ¼ k, we can write Eq. (17) as (see also Eq. (14))

vTp aðkpÞ
h i2

qp ¼ 1: ð18Þ

Using this result in Eq. (16) gives an expression for the

amplitudes which is also used in [1] and [20]:

qp ¼ ðvTp ŷÞ
2
: ð19Þ

In the following we will use Eq. (16) for the amplitude

estimation procedure since we have found empirically

that it is slightly more accurate than the expression in
Eq. (19). This concludes the derivation of the full-spec-

trum version of FDM.

Now, considering the modifications required for

frequency-selectivity, we let fkkgnk¼1 denote the modes

of Eq. (1) whose angular frequencies lie in Eq. (2).

We define a frequency grid which approximately spans

the interval in Eq. (2) using the following Fourier

frequencies:

2pk1
m

;
2pk2
m

; . . . ;
2pk�K
m

� �
; ð20Þ

where kj ðj ¼ 1; . . . ; �KÞ are �K consecutive given integers.

We also define the ðm� �KÞ sub-band transformation

matrix C containing the Fourier vectors corresponding
to the frequencies in Eq. (20) as

C ¼

1 � � � 1

ck1 � � � ck�K
..
. ..

.

cm�1
k1

� � � cm�1
k�K

2
66664

3
77775; ckj ¼ e�i2pmkj ð21Þ
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and solve the generalized eigenvalue problem as outlined
above but for the dimension-reduced modified matrix

pencil:

CT ðY1 � kY0ÞC: ð22Þ
The pre-multiplication with CT and post-multiplication

with C constitute the frequency-selective operation that

filters out all modes outside the frequency interval in Eq.

(20) and selects only the modes of interest. This is due to

the fact that CTA has approximately non-zero columns

only for the modes in A with frequencies that lie within

Eq. (2) which, in addition, have low dampings. So,
ideally, the pre-multiplication with CT and post-multi-

plication with C reduce the effective rank of Yj from �n to

n. The following outline explains all required steps of the

procedure in more detail.

2.1.1. Outline of FDM

Step 1. Determine the frequency band of interest
2pk1
m ; 2pk�Km

h i
by inspection of the FFT of fyðtÞgN�1

t¼0 (pos-

sibly the band of interest is pre-specified). Initially we

want to estimate K components (where n6K 6 �K)
within the selected interval; we will later ignore any es-

timated modes that lie outside the considered frequency
interval and use only the remaining n modes with the

lowest errors (as explained in Step 3). The choice to

estimate K ¼ �K modes initially, in lieu of n, will result in
better parameter estimates for practical MR signals (as

we have discovered empirically).

Step 2. Set the user parameter m as large as possible

(we use m ¼ N�3
2

� �
here, where �b c denotes the integer

part). Construct the three Hankel data matrices
fŶjg2j¼0 (where Ŷj is similarly defined to Yj, but now

based on the noisy data yðtÞ in Eq. (1) including the

noise term eðtÞ) and pre and post multiply them by CT

and C to compute the dimension-reduced data matrices

(see Eq. (22)), which we denote by fUjg2j¼0:

Uj ¼ CT ŶjC for j ¼ 0; 1; 2: ð23Þ
Note that it is possible to implement Eq. (23) in a com-

putationally efficient way (see [1]), which has been taken

into account in the results on numerical complexity in

Section 3.However, for conciseness reasons, we do not re-

derive the specific results of [1] for lowering the compu-

tational burden, associated with implementing Eq. (23).
Step 3. In order to solve the matrix pencil problem we

need to compute the pseudo inverse (Uþ
0 ) of the matrix

U0 [2]. Let

U0 ¼ VRW�; ð24Þ
(where � is the complex conjugation operator) denote

the SVD of U0 where V and W are unitary and R is a

diagonal matrix with non-negative main diagonal en-

tries. Compute Uþ
0 as:

Uþ ¼ ŴR̂�1V̂�; ð25Þ
0
where R̂ is the diagonal matrix containing the K largest
singular values of U0, and V̂ and Ŵ contain the K cor-

responding columns of V and W, respectively.

Consider the singular generalized eigenvalue problem

of interest (see Eq. (8), Eq. (22), and Eq. (23)):

ðU1 � kkU0Þvk ¼ 0; ð26Þ
where vk is the right generalized eigenvector associated

with the eigenvalue kk, k ¼ 1; . . . ;K. Left multiplication

with the truncated pseudo inverse Uþ
0 of U0 and using

the fact that Uþ
0 U0 � I (where I is the identity matrix)

yield

Uþ
0 U1vk � kkvk; k ¼ 1; . . . ;K: ð27Þ

Let l1 ¼ fkð1Þk gKk¼1 denote the K eigenvalues of the matrix

Uþ
0 U1. In a similar way, let l2 ¼ fkð2Þk gKk¼1 denote the K

eigenvalues of Uþ
1 U2 (Uþ

1 is computed similarly to Uþ
0 ).

Below we will use the fact that kð1Þk � kð2Þk for the

(k ¼ 1; . . . ; n) modes which we are interested in. Elimi-
nate any modes in l1 which lie outside the interval
2pk1
m ; 2pkKm

� 	
and define the error ð��kÞ of each remaining

estimated mode in l1 as:

�k ¼ min
j

kð1Þk




 � kð2Þj




: ð28Þ

Finally, obtain fkkgnk¼1 by selecting the n modes in l1
which have the smallest error and lie within the interval

of interest. Note that it is possible (but not likely), that

we end up with less than n modes inside the interval of

interest. This, however, has never occurred in our sim-

ulation study.

Step 4. Conclude by estimating the amplitudes
fqkgnk¼1 as (of Eq. (16)):

qk ¼
vTkC

T ŷ

vTkC
TaðkkÞ

: ð29Þ
2.2. The SELF-MODE

We consider the MODE method (see [6]) for esti-

mating the parameters of damped sinusoids from noisy

data [5]. The following discussion is inspired by [4],

which deals with beamspace array signal processing, a

problem related to that stated in Section 1. In order to

apply the MODE estimation technique to this problem,
we form a snapshot vector �yðtÞ of the measured signal in

Eq. (1)

�yðtÞ ¼
yðtÞ
..
.

yðt þ m� 1Þ

2
64

3
75 ð30Þ

for some m > �n. We also define:

xðtÞ ¼
q1k

t
1

..

.

q�nk
t
�n

2
64

3
75 �eðtÞ ¼

eðtÞ
..
.

eðt þ m� 1Þ

2
64

3
75:
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Then we can write

�yðtÞ ¼ AxðtÞ þ �eðtÞ; ð31Þ
where A is the Vandermonde matrix defined in Eq. (6).
We form the following ðm� mÞ sample covariance ma-

trix to which we will apply our frequency-selective op-

erations:

R ¼
XM�1

k¼0

�yðkÞ�y�ðkÞ � A
XM�1

k¼0

xðkÞx�ðkÞ
" #

A�; ð32Þ

where the approximation holds for high SNRs (i.e.,
when �eðtÞ is close to zero), and where M is the total

number of snapshots defined as

M ¼ N � mþ 1: ð33Þ
Our goal is to find a sub-band transformation matrix C

which approximately eliminates the data components

which lie outside the interval of interest and which in

addition reduces the dimensionality of Eq. (32) to allow

for a faster computation (see [4]).

Define, similarly to Eq. (20), the L Fourier frequen-
cies which approximately span the interval in Eq. (2) as:

2pk1
m

;
2pk2
m

; . . . ;
2pkL
m

� �
: ð34Þ

Also, let fukg
m�L
k¼1 denote the remaining (m� L) Fourier

frequencies which are not within the interval of interest.
Note that the number of frequencies in Eq. (34) is lower

than for FDM (see Eq. (20)) for the same frequency

interval Eq. (2). This is due to the filtering operation

below on the vectors f�yðtÞg of length m.
Now consider the matrix C, which is a ðm� LÞ ban-

ded Toeplitz matrix of the form

C ¼

c0 � � � 0

..

. . .
. ..

.

cm�L c0
..
. . .

. ..
.

0 � � � cm�L

2
666664

3
777775; ð35Þ

where m > L. The coefficient vector

c ¼ c0 � � � cm�L½ �T ð36Þ
is computed as follows. Define the polynomial

cðzÞ ¼ cm�Lzm�L þ � � � þ c1zþ c0 ð37Þ
with ðm� LÞ roots at zk ¼ eiuk ; k ¼ 1; . . . ;m� L. The

coefficients of cðzÞ can be found by

c ¼ poly eiuk
� �m�L

k¼1

h i
; ð38Þ

where the operator poly½�� converts the roots to the

polynomial coefficients. Note that Eq. (37) can be seen
as an FIR filter which has nulls placed at the m� L
Fourier frequencies fukg which lie outside the interval

of interest. We can thus expect that the filtering opera-

tion C��yðtÞ should attenuate any components in �yðtÞ
which are not within Eq. (2).
We will now show how to determine the parameter
estimates of interest using the sub-band sample covari-

ance matrix, obtained by pre and post multiplication of

R by C� and C, which we will denote by Rs:

Rs ¼ C�RC ¼
XM�1

k¼0

C��yðkÞ C��yðkÞ
h i�

� C�A
XM�1

k¼0

xðkÞx�ðkÞ
" #

A�C: ð39Þ

This is the key equation in the SELF-MODE approach.

We observe that Rs can be seen as the L� L sample

covariance matrix of the data sequence filtered by cðzÞ.
We also show below the important fact that C�A is also
a Vandermonde matrix (where each column is the cor-

responding column in A but truncated to length L)
multiplied with a diagonal matrix where the diagonal

entries will be ‘‘small’’ (close to zero) for all frequencies

outside the interval of interest.

C�A¼
c�0 � � � c�m�L � � � 0

..

. . .
. ..

.

0 � � � c�0 � � � c�m�L

2
64

3
75

1 � � � 1

k1 � � � k�n
..
. ..

.

km�1
1 � � � km�1

�n

2
6664

3
7775

¼

1 � � � 1

k1 � � � k�n
..
. ..

.

kL�1
1 � � � kL�1

�n

2
6664

3
7775

Pm�L
k¼0 c

�
kk

k
1 0

. .
.

0
Pm�L

k¼0 c
�
kk

k
�n

2
64

3
75:
ð40Þ

Now, let fbkgnk¼0 be the coefficients of the following

polynomial:

b0zn þ � � � þ bn�1zþ bn ¼
Yn
k¼1

ðz� kkÞ; ð41Þ

where fkkgnk¼1 are the modes of interest, and let B� be the
ðL� nÞ � L banded Toeplitz matrix defined as

B� ¼
bn � � � b0 0

. .
. . .

.

0 bn � � � b0

2
64

3
75: ð42Þ

Also define the eigenvalue decomposition of Rs as

Rs ¼ ½Ss Sr�
Rs 0

0 Rr

 �
S�
s

S�
r

 �
� SsRsS

�
s ; ð43Þ

where Ss is the matrix whose columns are the n principal

eigenvectors of Rs, and Rs is a diagonal matrix with the

corresponding eigenvalues on the diagonal. Rr is a di-

agonal matrix with ‘‘small’’ diagonal elements due to the

noise in the data and the presence of components out-

side the interval of interest. In the approximation in Eq.

(43) it is assumed that the noise level is relatively low

and that the nuisance components have been well at-
tenuated by the filtering operation in Eq. (39), and thus

that the elements in Rr are close to zero.
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The important conclusion from the decomposition in
Eq. (43) is that Ss approximately spans the signal sub-

space of interest and hence that RðSsÞ � RðC�AÞ (see

Eqs. (39) and (43)). Consequently, as B� C�A½ � ¼ 0,

which is easily verified considering Eqs. (41) and (42)

and the ‘‘truncated proportionality’’ between A and C�A
(see above) we also have

B�Ss ¼ 0: ð44Þ
An estimate of the vector b

b ¼ ½bn � � � b0�T ð45Þ
can be obtained by minimizing the least-squares (LS)

cost function tr B�SsðB�SsÞ�½ � ¼ tr BB�SsS
�
s

� 	
with respect

to b.

In [5] a minimization of a more refined weighted LS

cost function was suggested:

f ðbÞ ¼ tr BF1B
�SsF2S

�
s

� 	
; ð46Þ

where F1 and F2 are weighting matrices. It can be shown

(see [5]) that good choices of the weighting matrices are

F2 ¼ Rs and F1 ¼ ðB�BÞ�1
. This indicates that a two-step

procedure is required for the minimization of Eq. (46),

where an estimate of B is obtained in the first step by

minimizing Eq. (46) with F1 ¼ I. The roots that are the

solutions to the polynomial equation in Eq. (41) corre-

spond to the n modes that we are interested in. The steps

required for the suggested algorithm are outlined in the

following.

2.2.1. Outline of SELF-MODE

Step 1. Construct the full sample covariance matrix R

(Eq. (32)) of the measured data sequence.

Step 2. Compute the coefficients of the polynomial

cðzÞ using the ðm� LÞ Fourier frequencies fukgm�L
k¼1

outside the interval of interest and construct the banded

Toeplitz matrix C. Use Eq. (39) to obtain the dimension-

reduced covariance matrix Rs.
Step 3. Compute the eigenvalues and the corre-

sponding eigenvectors of Rs. Let Rs denote the diagonal

matrix containing the n principal eigenvalues and let Ss

be the ðm� nÞ matrix of the corresponding eigenvectors.

Step 4. Obtain an initial estimate of b by minimizing

Eq. (46) with F1 ¼ I and F2 ¼ Rs, where I is the

ðL� nÞ � ðL� nÞ identity matrix. The minimization step

can be implemented as outlined below (see [5]).

Rewrite Eq. (46) as

f ðbÞ ¼ vecðBÞ� FT
1

�
� SsF2S

�
s

�
vecðBÞ; ð47Þ

where � denotes the Kronecker product and

vecðBÞ� ¼ ½ bT 0T bT 0T � � � �: ð48Þ
Let �X denote the matrix FT

1 � SsF2S
�
s in Eq. (47),

where the rows and columns corresponding to the

zeros in Eq. (48) have been eliminated, and let X be

defined by
XT ¼ ½ I � � � I � �X
I

..

.

I

2
4

3
5: ð49Þ

Then Eq. (47) can be rewritten as

f ðbÞ ¼ b�Xb: ð50Þ
Minimizing Eq. (50) with respect to b, under a unit-

norm constraint on b, gives the total least square (TLS)

solution, which is easily obtained as the eigenvector ofX
corresponding to the smallest eigenvalue:

b̂ ¼ the smallest eigenvector ofX: ð51Þ

Step 5. Derive the enhanced estimate of b by mini-
mizing Eq. (46) as outlined in Step 4, but with

F1 ¼ ðB̂�B̂Þ�1
, where B̂ is constructed using the previ-

ously obtained estimate b̂ of b. Compute estimates

of fkkgnk¼1 from this enhanced estimate of b by using

Eq. (41).

Step 6. Finally, use the estimates of fkkg obtained in

the previous step and the APES method [16] to estimate

the amplitudes fqkg
n
k¼1 similarly to [7] (the acronym

APES stands for Amplitude and Phase EStimation).

Note that there are several other methods that could be

used for amplitude estimation, once fkkg have been es-

timated. Our choice of APES is motivated by the fact

that this method provides the most accurate amplitude

estimates of all methods of which we are aware, at a

reasonable computational cost (see, e.g., [18]).

2.3. The FIDO method

A straightforward implementation of frequency-se-

lective spectroscopy would be to simply make a passband

filtering of the signal, passing only the frequency band of

interest, and then applying any standard method to the

filter output to estimate the parameters within that band.

This approach was considered in [9]. The downside,
however, is that the signal length is generally only slightly

decreased by this filtering, and thus the computational

complexity will still be very high. Here we refine the

method of [9] by using a downsampling approach.

The idea of downsampling, or data decimation, is to

divide the original data sequence into several shorter

sequences with lower sampling frequency than the ori-

ginal data sequence. Specifically, by letting the positive
integer d denote the downsampling factor we can form d
different vectors of downsampled data sequences:

zk ¼ yðkÞ yðd½ þ kÞ � � � y dðNkð � 1Þ þ kÞ�T

¼ ½zkð0Þ zkð1Þ � � � zkðNk � 1Þ�T ; ð52Þ

where k ¼ 0; . . . ; d � 1 and Nk � N
d is the length of vector

zk which is chosen to include as many samples of fyðtÞg
as possible. Using these d sequences, a weighted average

of the covariance matrix estimates can be computed as
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R̂D ¼ 1

d

Xd�1

k¼0

XNk�m

t¼0

~zkðtÞ~z�kðtÞ
Nk � mþ 1

; ð53Þ

where ~zkðtÞ ¼ ½zkðtÞ zkðt þ 1Þ � � � zkðt þ m� 1Þ�T and m is
usually chosen close to maxkbNk=2c (in our numerical

examples we set m ¼ maxkbNk=2c). Using the estimated

covariance matrix R̂D we can choose any method from

the wealth of available sub-space methods operating on

the data covariance matrix, to obtain the modes of the

signal. In this paper we use the HSVD method [25].

As demonstrated in [23] and [24], downsampling may

increase the resolution of sub-space based methods.
Even more interesting, for our purposes, is that it can

decrease the computational burden significantly, as the

size of the covariance matrix estimate is reduced (m is

chosen close to maxkbNk=2c � bN=2dc instead of bN=2c
which would normally be the case if we did not apply

decimation).

The problem with downsampling is that it can in-

troduce aliasing. When downsampling the signal we
increase the angular frequency of the signal components

(as the sampling frequency is artificially reduced) by the

downsampling factor d. This means that any peaks not

lying within the angular frequency band ½�p=d; p=d� will
cause aliasing, so for our decimation to be as effective as

possible (i.e., to enable choosing a high d) we would like

to have all peaks of interest within a small frequency

band centered around the origin (i.e., the zero fre-
quency) and we would also like to suppress the out-of-

band components to reduce the effect of the aliasing and

achieve frequency-selectivity. This can be achieved by

first modulating the data so that the center of the band

of interest is mapped to the origin, and then applying a

passband filter to attenuate the out-of-band components

(assuming these components are well separated from the

band of interest). In this paper we use the passband FIR
filtering algorithm of [9], as it has been shown to give

good results for MR spectroscopy data. This filtering

algorithm basically consists of using FIR filters of in-

creasing orders until the out-of-band components are

‘‘sufficiently’’ suppressed. Below we give an outline of

the FIDO method.

2.3.1. Outline of FIDO

Step 1. Modulate the data fyðtÞg by using the fre-

quency ��x, where �x ¼ ðxu þ xlÞ=2 denotes the center

frequency of the band of interest ½xl;xu�, so that a new

data series f�yðtÞg is obtained

�yðtÞ ¼ yðtÞe�i�xt; t ¼ 0; . . . ;N � 1 ð54Þ

for which the frequency band of interest is centered

around the zero frequency.

Step 2. Apply the FIR filtering algorithm of [9] to the
data sequence f�yðtÞg to obtain the filtered data sequence

f�yF ðtÞg which has most of its power in the frequency
interval of interest ½�ðxu � xlÞ=2; ðxu � xlÞ=2� (the
chosen passband for the FIR filter).

Step 3. Downsample the data sequence f�yF ðtÞg using

the downsampling factor d ¼ b2p=ðxu � xlÞc to obtain

the d vectors of downsampled data sequences fzkg in

Eq. (52). We recommend choosing a lower value of d if

there are interferences very close to the band of interest.

Step 4. Compute the weighted average covariance

matrix estimate R̂D using Eq. (53).
Step 5. Employ a standard sub-space method oper-

ating on the covariance matrix estimate R̂D to obtain the

modes �k1;D; . . . ; �kn;D of the downsampled data. We use

the HSVD algorithm [25] in our numerical examples.

Step 6. Correct the modes obtained in the previous

step so that the corrected modes correspond to the

modes of the filtered signal f�yF ðtÞg before downsam-

pling:

�kk;F ¼ �k1=dk;D ; k ¼ 1; . . . ; n: ð55Þ

Step 7. Use the estimated modes from the previous

step and the filtered signal f�yF ðtÞg from Step 2 to get the

amplitudes �qk;F of the components in f�yF ðtÞg using LS:

�q1;F

..

.

�qn;F

2
64

3
75 ¼ ðA�

�NF
A�NF

Þ�1
A�

�NF
�yF ; ð56Þ

where A�NF
is defined similarly to Eq. (6) but with �NF

rows, where �NF is the number of elements in the vector
�yF consisting of the filtered data sequence f�yF ðtÞg, and
with n columns where the kth column corresponds to
�kk;F from the previous step (k ¼ 1; . . . ; n).

Step 8. Finally, obtain the modes of the original un-

modulated signal fyðtÞg via

kk ¼ �kk;F e
i�x; k ¼ 1; . . . ; n: ð57Þ

Also correct the estimated complex amplitudes f�qk;F g
obtained in the previous step by using the correction

factor given in [9], to remove the distortion from the

FIR filter, and obtain the amplitudes fqkg correspond-

ing to the modes fkkg of the original signal fyðtÞg.
3. Numerical examples

Five frequency-selective methods, namely FDM,

SELF-MODE, FIDO, SB-HOYWSVD, and SELF-

SVD, will be compared statistically by showing the pa-

rameter estimation performance for different component

configurations and levels of noise. To show the advan-

tages and disadvantages of the frequency-selective ap-

proach we also present the performance obtained by

using a standard time-domain SVD method (HSVD)
(see, e.g., [15] and [17]) covering the entire spectral

range. A simple two-component example is considered

in detail to compare the estimation accuracy of the five
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methods, their computational complexity and the in-
terference problems induced by a nuisance component.

We will also explore a simulated 11 component example

where the signal is derived from a typical in vivo 31P

spectrum measured in the brain. The added noise is zero

mean, white and circular Gaussian distributed with

standard deviation r. The quality of the different pa-

rameter estimates is measured as the relative root mean

square error (RRMSE) for each component k ¼ 1; . . . ; n
[in percent]:

RRMSEk,100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!

X!
t¼1

ðnk � n̂tkÞ
2

n2k

vuut ; ð58Þ

where ! is the number of Monte-Carlo runs (we use

1000), nk denotes the relevant parameter and n̂tk is its

estimate obtained in the tth run.

Consider a data sequence consisting of two expo-

nentially damped sinusoids of which only one (compo-
nent 1) is of interest. The two components have the

following true parameter values (where au stands for

amplitude units):

x1 ¼ 20Hz x2 ¼ varied;

a1 ¼ 10Hz a2 ¼ 10Hz;

q1 ¼ 20au q2 ¼ 320au:

The sampling frequency ðfsÞ is 1 kHz and the number of

data points N is 512. Unless otherwise specified, the

frequency of component 2 ðx2Þ is 100Hz. Note that the

interference component (component 2) is significantly

larger than component 1. The FFT spectrum of a typical
Fig. 1. FFT spectrum of a typical data sequence in the two-componen
example of this data sequence is presented in Fig. 1
where the noise standard deviation (r) is equal to 5.

Throughout all simulations we consider a relatively

small frequency interval compared to the full spectral

range. The lower and upper frequency limits are in this

example set to about 10 and 30Hz, respectively. This

interval corresponds to 1
50

of the full spectral range. For

SELF-MODE we set the snapshot length (m) to 64

samples. This choice of m results in a sparser Fourier
grid compared to FDM and SELF-SVD, which forces

us to choose the limits of the frequency interval of in-

terest as 0 and 32Hz, since the number of Fourier fre-

quencies (L) is equal to 3 (with 16Hz separation) for this

small interval. Empirical evidence showed that a larger

m would not provide any significant improvement in the

parameter estimation accuracy, but would increase the

computational complexity. We set the FIR-filter length
(see, e.g., [7]) for the methods that use APES in the

amplitude estimation step (SELF-MODE and SELF-

SVD) to N
100

� �
. The user parameters of SB-HOYWSVD

were, after some testing, set to p ¼ 2, q ¼ 4, and c ¼ 16

(see the Appendix A). We also set K ¼ n (instead of

K ¼ �K) for FDM in this example, a choice which re-

sulted in better parameter estimates, in the low SNR

case, for this particular (rather artificial) data signal. For
high SNR, however, this choice of K resulted in a small

bias in the parameter estimates, which in our opinion

was small enough to be neglected. We consider this

simple data example useful for showing the numerical

performances of the frequency-selective techniques for

different data conditions.

The frequency interval should generally be chosen so

that as much as possible of the spectral tails of the
t example where the noise standard deviation (r) is equal to 5.
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component(s) of interest are included but without in-
cluding nuisance components. If there is a ‘‘spectral

gap’’ (meaning an interval comprising mostly noise with

low spectral energy) between the region of interest and

nuisance components, then including this ‘‘gap’’ might

increase the estimation accuracy, but at the expense of

increased computational complexity. Our experience is

that none of the methods presented herein is very sen-

sitive to small fluctuations in the choice of frequency
interval, which in our opinion is a sound feature of any

frequency-selective approach.

The RRMSEs (Eq. (58)) for the three parameters

(jq1j, x1, a1) are shown in Fig. 2 versus the noise stan-

dard deviation. As references we also show the RRMSE

obtained using HSVD and the (full-spectrum) Cram�er-
Rao bounds (CRB). We see that there is a severe in-

crease in the RRMSEs of HSVD when the signal is
buried in strong noise (i.e., a noise standard deviation

above 20). The reason for this appears to be the oc-

currence of a ‘‘noise component’’ somewhere in the

spectrum, with a slightly higher amplitude than com-
Fig. 2. RRMSEs for component 1 in the two-comp
ponent 1, which results in a false estimate. A similar
performance is obtained for FDM when the noise level

is high. A possible explanation for this is that FDM does

not include any additional step to reduce the interfer-

ences from noise or out-of-band components after the

windowing in the frequency domain; an operation which

is carefully carried out using sub-band projection oper-

ations in SELF-SVD. We also note that, for a noise

standard deviation above 10, we find a similar phe-
nomenon for FIDO. A possible explanation for this is

that the FIR-filtering step (Step 2 in Section 2.2) colors

the noise; and colored noise of strong power may badly

affect the accuracy.

Another important aspect to be studied concerns the

interference from a nuisance component. We consider

the case where the frequency separation between com-

ponent 1 and component 2 is varied from 20 to 200Hz.
The resulting RRMSEs for the amplitude estimates of

component 1 are shown in Fig. 3 for a fixed noise

standard deviation of r ¼ 5. We note that for a fre-

quency separation as low as 20Hz, the interference from
onent example using 1000 Monte Carlo runs.



Fig. 3. Amplitude RRMSEs for component 1 when the frequency

of component 2 is varied and the noise standard deviation (r) is equal
to 5.

Table 1

Parameters of the 11 damped sinusoids in the 31P magnetic resonance

spectroscopy data; ak are the dampings, xk are the frequencies and jqk j
denote the amplitudes

k xk [Hz] ak qk ðei0:75pÞ

1 )86 0.0167 75

2 )70 0.0167 150

3 )54 0.0167 75

4 152 0.0167 150

5 168 0.0167 150

6 292 0.0167 150

7 308 0.0167 150

8 360 0.0083 150

9 440 0.0951 1400

10 490 0.0083 60

11 530 0.0666 500

Fig. 4. FFT spectrum of a typical data sequence in the 11-component
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the larger component is rather strong, which usually
results in increased RRMSEs. However, HSVD is not

affected, as expected, unless the separation is very small,

since it estimates the parameters of both components

using the full spectral range.

Finally, we consider a more practical example that

mimics a Magnetic Resonance data analysis (see, e.g.,

[10]), for which there are 11 components whose pa-

rameters are presented in Table 1. The 31P components
corresponding to the brain tissue, phosphomonoesters,

inorganic phosphate, phosphodiesters, phosphocreatine,

and a-, b-, and c-ATP (adenosine triphosphate) are

present in this signal. The number of samples N is 512

and the sampling frequency ðfsÞ is 3 kHz. The FFT

spectrum of a typical example of this data sequence is

presented in Fig. 4 where the noise standard deviation

(r) is equal to 5. We focused on the first of the two ATP
doublets (components 4 and 5 in Table 1). The lower

and upper frequency bounds were set to about 120 and

200Hz, respectively for FDM, FIDO, SB-HOYWSVD,

and SELF-SVD. For SELF-MODE the selected fre-

quency interval is slightly larger for the same reasons as

discussed in the previous example; here too, m is equal to

64. The RRMSEs for the three parameters of interest

(jqkj, xk, ak) are shown in Fig. 5 for component 4 for
increasing noise standard deviation. The results for

component 5 were very similar to those of component 4

and have therefore been omitted. The length of the FIR

filter for the amplitude estimation step (APES) in SELF-

MODE and SELF-SVD was set to N
15

� �
in this example.

The user parameters of SB-HOYWSVD were, after

some testing, set to p ¼ 8, q ¼ 12, and c ¼ 16 (see the

Appendix A). For FDM we set K ¼ �K as suggested for
practical MR signals in Section 2.
31P example where the noise standard deviation (r) is equal to 5.
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Fig. 5. RRMSEs for component 4 in the 11-component 31P MRS example using 1000 Monte Carlo runs.
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The computational speed of the five frequency-selec-

tive methods is generally superior to that of HSVD.

Table 2 shows the required number of flops to perform

one simulation run for each method in the above two
given examples. The magnitudes of these values of

course depend on the size of the frequency interval of

interest, the number of components and the total num-

ber of data samples. For SB-HOYWSVD, this number

also depends heavily on the user parameters. We note

that the computational complexity of any method in-
Table 2

Required number of flops for the different methods for the two-com-

ponent example (Ex. 1) and the 11-component example (Ex. 2)

Method # Flops (Ex. 1) # Flops (Ex. 2)

FDM 1.005� 107 1.367� 107

SELF-MODE 1.872� 107 2.479� 107

FIDO 1.048� 107 2.908� 107

SB-HOYWSVD 0.988� 107 2.795� 107

SELF-SVD 7.202� 105 6.897� 108

HSVD 7.491� 108 7.271� 108
volving a large SVD can be reduced by using the fast

Lanczos algorithm (see [26]). This technique has how-

ever not been considered in this paper.
4. Conclusions

It has been suggested previously (see, e.g., [20]) that

there are primarily two different cases to consider in a

parametric spectroscopic analysis. One alternative is to

estimate only the parameters of a few genuine compo-

nents in an MR-signal corrupted by noise, and obtain
the quantities of interest directly from the parameters.

Another alternative is to estimate a very large set of

spectral lines (which is usually used to construct the

spectrum) from the measured data, where the SNR is

high, without paying any explicit attention to which

parameters that correspond to the true signal compo-

nents. The main goal is often to determine the concen-

tration of each chemical substance in a sample, and
this can be carried out in both cases using directly the
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estimated amplitudes in the first case or, e.g., by area
integration for each spectral component (or groups of

components) in the second case. In our opinion, the first

case should be preferred if we consider the frequency-

selective parameter estimation problem stated in Section

1, since the integration necessarily introduces subjec-

tivity in the choice of integration interval. One can also

argue that the first approach should be a better choice if,

e.g., the spectrum contains overlapping components.
Should the goal of the spectroscopic analysis be to es-

timate the frequencies of the spectral components, these

are also directly obtained from the parameter estimates,

and there is no reason to construct the spectrum.

Of the methods considered we note that FDM was

previously (in, e.g., [1,20]) designed for the second of the

two cases mentioned above, and the remaining four can

be considered as approaches for estimating directly the
parameters of the resonances. This also suggests that the

major difference between the methods presented here

should lie between FDM and the other techniques. We

have presented an interpretation of FDM that allows

parameter estimation for a desired number of compo-

nents lying in a pre-specified frequency interval, in the

same manner as for the other methods. This interpre-

tation can be seen as an addition to the previous deri-
vations of FDM, and as a suggestion on how to extend

the usefulness of this method.

Considering the two-component example in Section

3, we are able to draw some conclusions regarding the

parameter estimation accuracy for these five methods.

For moderately high SNRs, FDM seems to give better

parameter estimates than any of the other four fre-

quency-selective techniques. The FIDO and SB-HO-
YWSVD filtering and decimation techniques (especially

FIDO) show good performance when the SNR is high

but for low SNR they seem to be rather erratic (again,

especially FIDO). SELF-MODE and SELF-SVD have a

stable parameter estimation accuracy with RRMSEs

lying somewhere in between FDM and the two filtering

and decimation methods in this example. In addition the

two latter methods give satisfactory results even for low
SNRs. From Fig. 3 we see that none of the methods are

severely affected by closely spaced nuisance components,

but SELF-SVD seems to be more stable than the other

frequency-selective techniques when the frequency sep-

aration between the component of interest and the

strong nuisance component is small. The computational

complexity is rather similar for FDM, SELF-MODE,

FIDO, and SB-HOYWSVD in this example, while
SELF-SVD is about 10 times faster than the other four.

In addition, all five frequency-selective methods out-

performs HSVD in speed, as expected.

The results obtained for the 11-component MRS data

example indicate that for this more complex and realistic

signal, the difference in accuracy between the five fre-

quency-selective methods is generally smaller than in the
first example (especially FIDO shows a more stable
performance). We note that the performance of SELF-

MODE and FDM is slightly worse than in the previous

example compared to that of the other methods. From

Table 2 we see that FDM is faster than SELF-MODE,

FIDO, and SB-HOYWSVD, while SELF-SVD is not as

superior in speed for this example as for the previous

two-component signal. SELF-SVD is, however, still the

fastest. The parameter estimation accuracy for FIDO
and SB-HOYWSVD is sometimes better than that of the

other methods in this example. However, their rather

erratic behavior indicates that it might be better to use a

technique with a more stable performance, such as, e.g.,

SELF-SVD, which in summary seems to have the most

reliable parameter estimation accuracy if we consider all

examples presented in Section 3.

The general issue of user-friendliness of a method is
certainly also quite important, as the choice of a specific

method from the wealth of available techniques often

depends on the individual preferences of the user. For

example, it can be important to design a method with as

few user parameters as possible, so that it can be used as

a ‘‘black-box’’ alternative to the FFT. The methods

considered here have one or several user parameters (in

addition to the specification of the frequency interval
and the number of components, n). However, the choice

of these user parameters does not seem to severely affect

the results as long as they are set within reasonable in-

tervals. We note that SB-HOYWSVD has the largest

number of user parameters of the approaches considered

here. In the numerical examples presented herein we

have not tried hard to find the optimal parameter set-

tings for this method or any of the others. There might
be parameter settings that result in lower RRMSEs for

some of these techniques, but if such an optimization is

required for a method to work properly we can certainly

consider it to be less useful in practice since we generally

do not have the prior information necessary to perform

such an optimization.
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Appendix A

For the reader’s convenience we outline below the

main parts of SB-HOYWSVD and SELF-SVD without

going into details about the derivations of these meth-
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ods. The SB-HOYWSVD approach is conceptually ra-
ther similar to FIDO. The major differences include an

ARMA signal model instead of the model in Eq. (1) for

the measured signal and, since the AR part contains all

useful spectral information for that ARMA model (see

[8]), estimation of the AR parameters using an SVD-

based procedure for solving the high-order Yule–Walker

equations. The approach of SELF-SVD, however, is

based on the signal model in Eq. (1).

A.1. Summary of SB-HOYWSVD

It can be shown (see [8,15]) that the signal model in

Eq. (1) can be rewritten as

yðtÞ ¼ �
X�n

k¼1

gðkÞyðt � kÞ þ
X�n

k¼0

gðkÞeðt � kÞ; ðA:1Þ

which, under the assumption of a white noise sequence

eðtÞ, is an ARMA process having the same coefficients

fgðkÞg for the AR and MA parts. For the general case of

colored noise, Eq. (A.1) can be written as

yðtÞ ¼ �
Xp

k¼1

gðkÞyðt � kÞ þ
Xq

k¼0

hðkÞeðt � kÞ; ðA:2Þ

where hðkÞ incorporates the whitening filter of the noise,

which is assumed to be of MA type. It is well known that

for Eq. (A.2)

rðkÞ ¼ �
Xp

j¼1

gðjÞrðk � jÞ; kP q; ðA:3Þ

where rðkÞ ¼ E½y�ðtÞyðt þ kÞ� is the autocorrelation se-

quence of yðtÞ. Writing Eq. (A.3) for q6 k6 qþ p yields

the so-called modified Yule–Walker equations. In the

case where q6 k6 qþ c, where c > p, the over-deter-

mined Yule–Walker equation system is obtained, which

can be used to estimate the coefficients fgðkÞg. After this
very brief introduction to ARMA-modeling of expo-

nentially damped sinusoids (see, e.g., [15] for more de-

tails) we outline the structure of SB-HOYWSVD. Note

that in [8], SB-HOYWSVD is used for the entire spectral

range by dividing it into several sub-bands and analyz-

ing them one at a time, whereas here we only use

one sub-band, corresponding to the frequency interval

in Eq. (2).
Step 1. Choose a value for the decimation factor d

(similarly as for FIDO). Fix the user parameter p and set

q and c to be at least equal to p (see above). The oper-

ating parameter (or model order) p is preferably chosen

to be larger than the number of estimated components

in the frequency interval of interest (i.e., p > n).
Step 2. Generate a sub-band signal by modulating the

original signal (see Section 2.3) followed by a bandpass
filtering, focusing on the interval of interest using an

FIR filter (in our numerical examples we have used the

FIR filter of [9]), and decimation. In SB-HOYWSVD,
only the first decimated sequence is considered (i.e.,
k ¼ 0 in Eq. (52)). Note that the FIR filtering procedure

colors the noise in an MA manner, a fact that is dealt

with in the signal model of Eq. (A.2).

Step 3. Solve the (over-determined) Yule–Walker

equation system for the sub-band signal using the HO-

YWSVD technique (see [8]) and obtain estimates of the

signal poles. Reflect the poles lying outside the unit

circle, compute the sub-band complex amplitudes and
discard all poles outside the filter’s bandpass.

Step 4. Correct the parameters obtained in Step 3 to

compensate for the filtering and decimation, similarly to

Step 8 in FIDO.

A.2. Summary of SELF-SVD

For conciseness reasons, the discussion about the

ideas behind SELF-SVD is kept as short as possible (see

[7] for details).

Step 1. Multiply the measured signal yðtÞ with the

Fourier vectors corresponding to the Fourier frequencies

comprising the interval in Eq. (2) (similarly as for FDM in

Eq. (20)) to focus on the spectral region of interest.
Step 2. Use sub-band projection operations (see [7])

to suppress the interferences from noise and out-of-band

components in the filtered data sequence from Step 1.

Step 3. Use an SVD-based technique to obtain esti-

mates of the n signal modes located in the interval of

interest.

Step 4. Finally, estimate the (complex) amplitudes of

the n peaks using APES [16] and the signal modes esti-
mated in Step 3.
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